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Abstract

In order to provide the additional security required by
modern mobile devices, biometric methods and Continuous
Authentication(CA) systems are getting popular. Most exist-
ing work on CA are concerned about achieving higher ac-
curacy or fusing multiple modalities. However, in a mobile
environment there are more constraints on the resources
available. This work is the first to compare between dif-
ferent biometric modalities based on the resources they use.
We do this by determining the Resource Profile Curve (RPC)
for each modality. This Curve reveals the trade-off between
authentication accuracy and resource usage, and is helpful
for different usage scenarios in which a CA system needs to
operate. In particular, we explain how a CA system can in-
telligently switch between RPCs to conserve battery power,
memory usage, or to maximize authentication accuracy. We
argue that RPCs ought to guide the development of practi-
cal CA systems.

1. Introduction
With the rapid increase of mobile phone usage in day-to-

day activities, including banking and e-commerce the secu-
rity requirement of these devices has increased drastically.
However, a recent survey[23] found that users still prefer
convenience over accuracy when using authentication meth-
ods. In fact, the survey shows that 25% of users prefer not
to use any authentication scheme on their mobile devices.

The main reason for the lack of convenience in tradi-
tional authentication schemes is due to the inherent differ-
ence in the usage of mobile devices when compared with
desktop PCs. The session duration on a desktop PC is much
longer compared to that on a mobile device. Therefore the
overhead of authenticating for shorter sessions is a higher
burden to the user.

It thus seems that security is always at the expense of
convenience; but the promise of Continuous Authentication
(CA) is to achieve increased security and convenience.

Traditional biometric authentication method includes
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Figure 1. Flow of a Continuous Authentication System

sensing a biometric signal, extracting features from the sig-
nal and using a classifier on the extracted features. In a CA
system, this process is repeated periodically (say, every 30
seconds) to allow the mobile device to determine the contin-
ued presence of the authorized user at any given time. This
is illustrated in Fig 1. To do this, the CA system should
calculate P , the probability that the user is still present at
the device. This provides a higher level of security than tra-
ditional session based authentication systems, which would
be vulnerable to session hijacking since mobile devices can
be easily shared. CA systems rely on passive biometric sig-
nal acquisitions, this reduces the disruptions of an active au-
thentication method. For an example, interruptions prompt-
ing the user to provide a fingerprint is too disruptive for CA.
Other key considerations that should be considered in a CA
system is explained in [27].

However, compared to desktop PCs, mobile devices are
resource-constrained. They have limited amount of en-
ergy, computational capabilities, and memory. Continu-
ously checking biometric signals would be an additional
strain on these limited resources. Therefore CA researchers
should be more aware of how different biometrics consume
resources and how to effectively manage these resources.

This work provides an insight into how common trans-
parent biometric modalities consume resources. Our work
is focused on understanding the different levels of security
each biometric can provide and the resources used to pro-
vide that, which can be characterized by a Resource Profile
Curve(RPC). This is a first of its kind analysis allowing to
compare between biometric modalities based on their re-
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Modality Feature Extraction Classification
Feature Parameters Classifier Parameters

Face

PCA[30] # of PCs SVM -
Fisher[2] # of components Random Forest Depth, estimators
LBPH[1] Radius, Neighbours Neural Network Number of neurons
CNN (VGG) [20] - Deep CNN (VGG) -

Voice

MFCC[7] # of cepstrum filters GMM -MFCC delta[7] # of cepstrum filters
LOGFBANK[18] Number of filters SVM -LPC[19] Number of order

Touch Statistical Features[11] Number of features
SVM -
Random Forest Depth, estimators
Neural Network Number of neurons

Gait Statistical Features[4] -

SVM Soft-margin
Random Forest Depth, estimators
K-Nearest Neighbor K
Decision Tree Max-depth

Soft/Geometric
Face
Features

Skin color Skin patch size Cosine Similarity -
5 landmark based ge-
ometric features

- SVM -

68 landmark based
geometric features

- Neural Network Number of neurons

Random Forest Depth, estimators

Table 1: Different configurations of biometric algorithms implemented

source usage and the utility (security) they provide.
The proposed Resource Profile Curves will have real-life

implications for CA implementations. Following scenarios
explain how an RPC for energy consumption will be useful,

• Security-First Based on the current application used,
a security requirement range can be imposed. (Bank-
ing apps requiring higher level of security).
• Resource-First Based on the current energy saver

mode in the mobile phone, a range of energy consump-
tion which is acceptable can be imposed. (This could
mean restricting access to higher security requiring ap-
plications)
• Context Based Based on context some modalities

might not be available requiring the CA system to rely
upon the next best alternative. (Face being unavailable
due to low light, voice being unavailable due to back-
ground noise)

By understanding how each biometric modality performs
within resource constraints a CA system can provide the
highest possible security while maintaining the lowest pos-
sible resource consumption.

2. Literature Review
Since mobile devices are resource constrained, espe-

cially in energy and memory, there have been many stud-
ies on analyzing and profiling these resources for different

aspects (e.g. apps, embedded software etc.). In [22] Qian
et. al. did a resource usage profiling for mobile devices in
different layers (transport layer, application layer etc.) of
a mobile device and proposed a resource optimizer. In [9]
Falaki et. al. proposed a smartphone resource usage moni-
toring tool which measures usage context (CPU and mem-
ory) for research deployments. A similar usage measure-
ment tool was proposed by Wagner et. al. in [29] which col-
lects usage based information from Android smart phones
and quantifies resource usage by the collaborators.

Carroll et. al. carried out a direct approach to mea-
sure the significance of energy drawn by components in a
smartphone in [3], where they have analyzed the energy
consumption as well as battery lifetime for usage patterns.
Tiwari et. al. in their work[28] proposed a power analysis
technique which has been applied to two commercial micro-
processors for embedded software. In the earlier stages of
smart phones, researchers from Nokia came up with a soft-
ware profiling tool[6] that could be used by developers to
measure the power consumption of their applications. The
interest in understanding resource usage and minimizing it
is evident by the focus on this area of research. However, no
light has been shed on profiling of these limited resources
for biometrics for mobile devices yet.

CA for mobile devices using biometrics has been getting
significant attention [21, 11, 10]. Initial work focused on
using a single biometric to implement CA [24, 8, 16, 12],



Dataset Modalities Identities Sessions
MOBIO[17] Video, Au-

dio
152 total 2 sessions, 6

rounds each
Touchalatics
[11]

Smartphone
touch

40 people 1

HuGaDB
[4]

Accelero-
meter data

18 people Variable
number

Table 2: Datasets used

later multiple modalities have been fused to achieve higher
accuracies[25, 15, 13, 26]. Even though many analysis has
been done on usability and security of CA [23, 5, 14], no
work has been done on how CA strains a device with limited
resources. Our work tries to address this gap and provide a
new dimension to answer the question, which modalities we
should use based on available resources.

3. Methodology
Throughout this study, the focus is on generating a curve

for resource consumption vs utility of biometric modalities.
The utility/security provided by the biometric modality can
be measured in terms of the algorithm accuracy. This per-
formance will depend on two main factors,

1. Uniqueness of the Biometric. (while hard biometrics
like fingerprint/iris could distinguish individuals with
higher confidence, behavioural biometrics like GAIT
will not have such a level of distinctiveness)

2. Feature extraction and classification algorithms effec-
tiveness.

Based on these factors different biometrics will perform
differently on accuracy levels, computational requirements,
energy consumption, and memory requirements. We will
be measuring these factors to come up with Resource Pro-
file Curves for biometric modalities measured.

3.1. Biometric Algorithms

In order for a biometric modality to be suitable for use
in a CA scenario, the signal acquisition should be passive
and non-intrusive. Therefore some physiological biometrics
like fingerprint and iris are not suitable as they are imple-
mented today because they require users active cooperation
to capture. In our study, we have selected 1) Face, 2) Voice,
3) Touch Screen Gestures, 4) GAIT and 5) Soft/Geometric
Face Features as the biometric modalities which allow the
acquisition to be done transparently.

In order to characterize the resource consumption vs util-
ity of each of these biometric modalities, some of the pop-
ular implementations for these biometric modalities were
selected and implemented.

Table 1 summarizes the variations for these biometrics
which were analyzed. Multiple combinations of features,

classifiers along with variations of the indicated parameters
were used to get different configurations of algorithms for
each modality. These different configurations will later be
profiled in terms of energy consumption and memory con-
sumption to get their Resource Profile Curves.

3.2. Datasets

In order to test all of the different algorithms on a fair
grounds we needed a dataset which provides input for all 5
modalities. Since there is no existing dataset that satisfies
the requirement, we combined 3 different datasets as shown
in Table 2 to create virtual identities.

A key consideration when selecting the datasets was that,
they have to emulate the realistic complexity of biometric
modalities captured within a mobile environment for CA.
Therefore all the datasets were selected to be captured in
mobile phones and in usual usage scenarios.

In order to keep the datasets in a similar complexity, we
ensured the number of different identities was kept simi-
lar. To achieve this we used the IDIAP collection (26 iden-
tities) data on MOBIO and entire datasets of Touchalatics
and HuGaDB(40 and 18 identities).

3.3. Resource Profile Curves (RPC)

The objective of the work is to come up with a curve for
resources consumed vs utility provided by each biometric
modality. Here the utility for any biometric is the level of
security that modality is able to provide. The level of secu-
rity will be measured by classification accuracy.

The ideal RPC would be an inverted ”L” shape, where
the perfect accuracy can be achieved with the minimum
amount of resources. The worst case RPC would be a hor-
izontal line on the x-axis where regardless of the resources
consumed the accuracy remains at a minimum. However,
in reality, the worst case is lower-bounded by the random
guessing algorithm.

Each of the algorithm configurations can be plotted with
respect to accuracy vs resource consumption in a scatter
plot. Let,

S = {(resource, accuracy) pairs for each modality} (1)

Using the points in S an RPC needs to be generated. In
order to generate this the following observations were used,

• The least energy consuming algorithm will be a ran-
dom guess which will also give the lowest accuracy

• For any limit in available resource level, the algorithm
which provides the best accuracy for a lower resource
consumption level will be selected

Therefore, the Resource Profile Curve will be lower
bounded by the random guessing algorithm. Any new



points in the RPC should be to the right and above this ran-
dom point. Therefore the RPC will be a monotonically in-
creasing curve.

To generate the RPC the critical points for each modality
will be selected using the method shown in the Algorithm 1.
Here p.RC, q.RC refers to the resource consumption and
p.acc, q.acc refers to the accuracy of p and q.

Input: S = {Points in the scatter plot}
Output: Sc = {Critical points}
Let Sc = { };
foreach p ∈ S do

critical = True
foreach q ∈ S | q.RC ≤ p.RC do

if p.acc ≤ q.acc then critical = False;
end
if critical = True then Sc.add(p);

end
Algorithm 1: Isolating critical points

The Resource Profile Curve will be drawn using the pair-
wise linear curve on the critical points in Sc generated as
shown in the algorithm. Following the same method, two
Resource Profile Curves were generated,

• Accuracy vs Energy consumption (EC) Profile
• Accuracy vs Memory consumption (MC) Profile

3.3.1 Measuring Energy Consumption (EC)

The overall energy consumption for an authentication task
can be analyzed in two parts,

1. EC of the algorithm to perform authentication
2. EC of the sensor to acquire the biometric signal

Energy consumption (EC) for algorithm Time
consumed for recognition by each algorithm config-
uration was used as a proxy for the EC. The main
assumption was that the EC by the mobile device will
be proportional to the execution time for each algorithm,

Energy ∝ Time (2) Energy = k × Time (3)

Here k is the constant of proportionality.
To calculate k, a simple algorithm with a set number of

calculations was executed in the PC as well as the Android
environment. The runtime for one instance of the algorithm
will then be measured and the rate of discharge of the phone
battery will also be measured. These two values will be used
in the Eqn. (3) to calculate k.

Energy consumption for acquisition An Android ap-
plication was developed to continuously log the battery
level over time at a constant interval. The discharge rate
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Figure 2. Energy consumption of different sensors

was cealculated for the following: idle, capturing face im-
age every 5 seconds, capturing a voice clip every 5 seconds,
logging accelerometer data, logging touch screen data.

In order to isolate the energy discharge rates for bio-
metric signal inputs(RDsensor) the rate of discharge of idle
state (RDidle) was deducted from the total rate of discharge
(RDmeasured) as shown in Eqn. (4)

RDsensor = RDmeasured −RDidle (4)

The energy consumption (Energyalgo) for a given algo-
rithm can be then calculated as follows,

Energyalgo = k × Timealgo +Rsensing (5)

The time consumption was measured on a core i7-6700
3.4 GHz CPU with 8GB of RAM. Mobile battery discharge
rates were measured using an LG V10 android device.

The main focus here, is on the time/energy consumed in
the test environment. The time consumption for training the
models is not considered because in practice training will be
done only once, when registering the user of a smartphone.
However, the test scenario has to be run on the mobile de-
vices continuously to achieve CA.

3.3.2 Measuring Memory Consumption

The total sizes of feature extraction models (where needed)
and classification models were added up for each configura-
tion to measure the memory consumption of each method.

4. Results
The rate of discharge results is shown in Fig. 2. The

highest energy consuming sensor is the camera and the low-
est energy consuming sensor is the touch screen sensor.

4.1. Calculating Energy Consumption

To calculate the constant of proportionality (k) a simple
number addition algorithm was implemented in both com-
puter and mobile platforms and the time and energy dis-
charge rates were measured and the value for k was calcu-
lated using the Eqn. (3). The value for k was a very high



Figure 3. Energy profile for different biometrics

value (≥ 150). Therefore, based on Eqn. (5) the time con-
sumption of the algorithms would dictate the behavior of the
curve and hence, the energy consumption of sensing action
has a minimal effect.

4.2. Accuracy vs Energy Consumption Profile

Fig. 3 shows the energy consumption vs accuracy curve.
The x-axis has been log scaled in order to expand the
smaller values and compress the larger values.

All the curves start with a low energy consumption, low
accuracy state and they provide higher accuracy with in-
creasing energy consumption. The curves eventually flatten
out as energy consumption increases, this shows diminish-
ing returns as the amount of energy consumed is increased.

It can be observed that GAIT outperforms most biomet-
rics in low energy consumption, however, Face biometric
outperforms all of the other modalities for highest accuracy
achieved. The highest performing algorithm configuration
for Face (VGG) consumes roughly 3 times the energy of the
2nd best Face-based user recognition algorithm.

The random point shown in the graph is a baseline for the
lowest energy consumption and lowest accuracy, it can be
observed that by increasing a very small amount of energy
we can achieve a slight increase in accuracy by using soft
biometric traits (skin color).

4.3. Accuracy vs Memory Consumption Profile

Fig. 4 shows the memory consumption vs accuracy
curve, similar to the previous graph this graph’s x-axis has
also been log-scaled.

When considering memory constraints there is no clear
leader. We can achieve a better than random accuracy with-
out having to save a trained model by using soft feature-

based methods. Looking at the curves we can see that voice
and GAIT performs best for lower memory values and with
larger model sizes face biometrics outperforms the rest.

We will see practical usages of this curve in Section 5.

5. Discussion
5.1. Usage in CA

Comparing Fig. 3 and Fig. 4, complex decisions can be
made by a CA system. Depending on the available memory
and battery level an intelligent CA system should be able
to provide the maximum possible security by using these
RPCs. We will illustrate the use-cases highlighted in Sec-
tion 1 with the generated Resource Profile Curves here,

Security-First
Higher security requiring applications like Banking

would require a high-security level (say, accuracy levels
over 0.9). Using the RPCs in Fig. 3 4 it is clear that, in
order to achieve this level of accuracy the CA system can
enforce the use of Face biometric. If unable to capture Face
passively the CA system could prompt the user to explicitly
provide an authentication before allowing access.

When using an application like YouTube the security re-
quirement is comparatively lower. In a scenario like this,
according to the RPC in Fig. 3 the CA system can limit
power consumption by using GAIT or Soft-Face biomet-
rics. The CA system can limit the memory consumption by
using RPC in Fig. 4 to select Voice or GAIT.

Resource-First
Modern smartphones allow the user to select an energy

saver mode, which would activate when the battery level of
the device drops below a specified level. In a scenario like
this, a CA system can operate in a lower region of the x-axis



Figure 4. Memory profile for different biometrics

in the energy profile curve in Fig. 3.
A mobile device has a limited amount of free memory. If

the available memeory is low, CA system can use the mem-
ory profile curve in Fig. 4 to operate in a lower region of
the x-axis. By choosing modalities like Soft-Face, GAIT
and Voice the CA system can minimize the use of memory.

It is important to note that the RPCs shown here are for
unimodal systems. Multiple points in these RPCs could be
fused together to achieve higher levels of accuracy at higher
resource consumption levels. There is also a trade-off be-
tween memory and energy which can be taken advantage of
based on the resource limitations.

Context based
Based on the current context the mobile device is being

used, the availability of the modalities will change. Follow-
ing two examples illustrate these scenarios.

1. Walking while answering a call: In this scenario only
voice and GAIT modalities will be available.

2. Sitting down, scrolling through an article: In this sce-
nario only Face and Touch modalities will be available

In any of these scenarios, using the RPC, a CA system
can find comparable algorithms for the available modali-
ties. The modality selection can be based upon the security
required. If the accuracy required is around 0.7, by looking
at Fig. 3 we can see that there are comparable algorithms
for GAIT, Face, Touch and Voice for this accuracy level.

For an example, when trying to select a biometric modal-
ity for CA when face and GAIT are unavailable (due to low
light, sensor occlusion in a stationary use-case) the choice
will depend on the level of accuracy needed. If the level of
accuracy needed is around 0.3, the best alternative would
be Soft-Face; if the accuracy requirement is around 0.6, the
best alternative would be Touch and if the accuracy require-

ment is over 0.75 the only option would be Voice. This illus-
trates how the RPC enables smart choices for a CA system.

5.2. Limitations

The complexity of the datasets can affect the measure-
ment of the Resource Profile Curves. To minimize the im-
pact of this we chose the datasets to be comparable to actual
usage in CA for mobile devices. For a given algorithm, the
energy consumption will not vary based upon the dataset,
however, the accuracy levels will vary based on the dataset.
Therefore each modality can be represented by a band of
values more completely than the current curves.

As technology improves these curves will keep chang-
ing. However, it is clear that the curves can only keep
moving up (achieving higher accuracy) and left (consum-
ing lower resources). Therefore we can view these curves
as a snapshot view of the biometric modalities. For an ex-
ample, by looking at the Face RPCs in both Fig. 3 and 4 we
can see that there is potential to try and reduce the memory
consumed by Face-based authentication algorithms.

6. Conclusions & Future Work
The two RPCs generated in this work provides a new

perspective towards evaluating the suitability of biometrics
for constrained environments like mobile devices. It is im-
portant to note that these curves will keep shifting as the
algorithms and hardware improve.

One of the future work is to extend the curves into bands
of values by varying the complexity of the datasets as dis-
cussed in Section 5.

Another target is to use these Resource Profile Curves
in an intelligent decision-making engine to dynamically
switch between biometric modalities depending on their
availability, resource availability and security requirement.
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