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Abstract—Securely and unobtrusively authenticating a user is
an important problem given the pervasiveness of smartphones.
Existing approaches, such as password, fingerprints, or facial
recognition, are vulnerable to various attacks, and/or degrade
usability. To overcome this problem, we propose Shakespeer,
which differentiates users based on uniqueness in the propagation
of haptic vibrations through hand, forearm muscles and bones.
These vibrations are generated by the user’s smartphone and
sensed by their smartphone and smartwatch. The unobtrusive
haptic vibrational response makes this biometric feature hard to
be replicated. Meanwhile, it provides the co-presence detection
function, which allows the devices to confirm the co-presence on
the user’s body. We implement Shakespeer using smartphones
and smartwatches and tested it across 32 subjects under real-
world settings. From our preliminary exploratory evaluation,
Shakespeer achieves an equal error rate (EER) of 0.59 %,
demonstrating its feasibility.

I. INTRODUCTION

While authenticating a user to their smartphone is a widely
studied area, providing sufficient levels of both security and
usability remains a difficult problem. For example, while
passwords and PIN-codes are widely deployed in smartphones,
they are known to degrade usability [1]. Hence, many smart-
phones are now equipped with biometrics-based authentication
such as fingerprint or facial recognition [2], [3]. These solu-
tions, however, prove to be insecure due to recent spoofing
attacks [4]. To exacerbate this problem further, the COVID-
19 pandemic required users to remove their face masks for
facial recognition to work effectively. As a solution to this
problem, Apple updated their facial recognition method to
work even when a user is wearing a mask, so long as the
iPhone senses the nearby presence of a pre-authenticated
Apple Watch worn by the user, via Bluetooth [5]. While
this increased usability, reports demonstrated the method’s
potential for security breaches [6].

To this end, we ask the following question – can we design
a smartphone authentication system that strikes a balance
between security and usability? To answer this question, we
propose Shakespeer, a potential novel authentication and co-
presence detection system that utilizes the uniqueness of
vibration propagation response on a human’s hand and fore-
arm. Specifically, Shakespeer utilizes a vibration excitation
generated by the smartphone held in the user’s hand, which
in turn is propagated and sensed by both the smartphone and
the smartwatch. Given the unique physiological structure [7]

Fig. 1. The core idea of Shakespeer is that an external vibration excitation
generated by the smartphone propagates and is sensed by IMU sensors
on both the smartphone and the smartwatch for co-presence detection and
authentication.

of a human’s hand and forearm, the responses can be used as
a biometric for authentication. Specifically, we use the smart-
phone vibration engine as the excitation source and the inertial
measurement unit (IMU) on the user’s smartphone and watch
as distributed sensors to capture the propagation response, as
shown in Figure 1. Shakespeer is by design inherently secure
against spoofing attacks because (1) Shakespeer utilizes the
uniqueness of the physiological structure of the user’s forearm
which is hard to observe or replicate; and (2) the excitation
signal from the smartphone is dynamic.

However, designing Shakespeer comes with certain chal-
lenges. First, the sensed signal has a low signal-to-noise
ratio (SNR). We overcome this by (1) Selecting vibration
frequencies that avoid noise bands and maximize the vibra-
tion responses on both the gyroscope and accelerometer; (2)
applying a high-pass filter to reduce noise. Second, the IMU
data are sampled at a relatively low frequency, which causes
aliasing. Therefore, we found a variable time interval between
pulse excitations which could be sensed without aliasing.

To demonstrate the feasibility of our system, we implement
a proof-of-concept version of Shakespeer using an iPhone
and an Apple Watch. Subsequently, we perform exploratory
evaluation of twelve participants, and achieve an authentication
equal error rate of 0.59 %

II. RELATED WORK

Physiological biometric authentication methods such as the
recognition of face, fingerprint, iris, and voice are widely



TABLE I
COMPARISON OF EXISTING METHODS AND Shakespeer

Method Signal Modality Body Location Sampling Rate Co-presence detection? Device COTS?
[8] Vibration Finger > 400 Hz No Phone Yes
[9] Vibration Wrist > 300 Hz No Customized No

[10] Vibration Wrist 100 Hz No Watch Yes
[11], [12], [13] Audio Fingers and Palms > 40 kHz No Phone Yes

Shakespeer Vibration Fingers, Palms, Wrist 100 Hz Yes Phone and Watch Yes

proposed and studied in the literature. However because these
biometrics are readily observable, causing vulnerability to
presentation attacks [14]. Recently, several studies explore ap-
proaches utilizing the active mechanical vibration or acoustic
signals to capture biometric features from a human’s forearm.

Mechanical vibration based authentication methods were
proposed by [15], [9], [8], [16], [17], [18], [10]. TouchPass [8]
has designed an authentication method that senses the active
vibration responses, which depend on the uniqueness of the
finger structure. However, this approach requires a 400 Hz
sampling rate, which may not be available for many devices. In
contrast, Shakespeer requires a more commercially available
sample rate of 100 Hz. VibID [9] proposes a wrist device
authentication method that uses external excitation responses
of the wrist as the biometric, yet this is not suitable for
commercial off-the-shelf (COTS) devices. VibWrite [16] and
Velody [17] attain external vibration responses via stand-
alone devices, which are not feasible for mobile devices.
Recent work [10] proposes active vibration for smartwatch.
Shakespeer expands on this approach, by not only verifying the
user, but also by detecting the co-presence of the smartwatch
on the legitimate user’s forearm.

EchoLock [11], “Listen to your fingers” [12], and [13]
leverage the acoustic echo and Doppler effect to capture
unique features from fingers and palms. [11], [13] use the
speaker and microphone on smartphones as the excitation
generator and response receiver. However, these approaches
may be affected by external noise, and the usa of microphones
may cause privacy concerns.

Table I compares existing methods with ours. In summary,
Shakespeer is practical and useful in that it achieves both co-
presence detection and authentication using COTS devices.

III. BACKGROUND AND FEASIBILITY STUDY

We begin with an overview of the physiological basis of
our work, as well as a feasibility study.

A. Physiological Basis

It has been demonstrated in previous research works that a
person’s arms, palms, and fingers are structurally unique [7].
Research by Laput et al. also revealed that an externally
applied vibratory signal can propagate through the human
body [19]. The propagated signal is modified by the phys-
iological structure (such as bone, muscle, tissue), and may
be detected at another location on the body with a suitable
sensor. In addition, the human arm and hand characteristically
amplify or attenuate different frequencies of the signal [19].
These findings suggest that it should be possible to send a
vibratory signal from the hand to be detected at the forearm.

Fig. 2. The spectrograms of the signals captured by the gyroscope sensors (a)
in the smartphone, and (b) in the smartwatch. The inverted-V shape, prominent
in both spectograms, shows the feasibility of co-presence detection.

By choosing suitable frequencies, we could use the signal to
capture the physiological “signature” of the hand and forearm,
which could thereby serve as a biometric for authentication.

B. Feasibility Study

Is our idea feasible? To answer this question, we first need to
verify that a smartwatch worn on the forearm reliably detects
the vibratory signal generated by a smartphone held in the
hand of the same forearm, as opposed to vibrations caused by
other bodily movements. Second, we need to verify that the
detected signal is a biometric, i.e., it is able to discriminate
one user from another.
Co-presence Detection: Two devices can be said to be co-
present with high confidence if they have similar recordings
of a signal generated from a co-present source [20]. For the
signal source, we use the vibration engine in a smartphone
to generate a chirp signal that sweeps from 120 Hz to 180 Hz
over ten seconds. For detection, we use the IMUs in both the
smartphone and the smartwatch. However, these IMUs have a
sampling rate of only 100 Hz, and thus frequency aliasing will
occur. Fortunately, as we shall see later, a specially designed
pulse sequence could help to overcome the aliasing effect.
Figure 2 depicts the spectrograms of the signals detected at
both devices. As can be seen, both spectrograms have similar
frequency information. They show a prominent inverted-V
shape amid other background frequencies. This shape is due
to frequency aliasing, with the peak at 50 Hz, which is the
Nyquist frequency. We remark that although both micro-
phones [21] and IMUs [8] can sense vibrations propagating
through a medium, we use IMUs in this work because they
are less privacy invasive and more energy efficient [22]. While
both accelerometer and gyroscope are sensitive to vibration,
for the different excitation signals specific to Shakespeer,
we observe that for some excitation signals the gyroscope is
more sensitive to vibration than the accelerometer. Shakespeer
utilize this observation to design the excitation signal that work
for both gyroscope and accelerometer.



Fig. 3. Pairwise distance comparison between within-subject (denoted as
positive) and between-subjects (denoted as negative) over all 12 IMU channels
on phone and watch. There is a clear difference between positive and negative
scores, which demonstrates the feasibility of Shakespeer.

Signal uniqueness between subjects: We compute the spec-
trogram distance (L2 distance) between the within-subject
(same participants) and between-subjects (different partici-
pants). Figure 3 shows the comparison result (32 subjects) on
12 channels (from phone and watch). It can be found that the
vibration signal distance is different between the same subject
and different subjects. This strongly suggests that the biometric
is captured in the vibration signal.

IV. THREAT MODEL

We now present Shakespeer’s threat model. The goal of
the attacker is to unlock the user’s smartphone. There are two
ways to do this:
Possession of phone attack: The attacker possesses the
smartphone of the legitimate user, but not the smartwatch. This
can happen when the legitimate user, wearing the smartwatch,
is asleep, or distracted. Here, the attacker positions himself
close to the user, and attempts to unlock the phone.

Shakespeer should prevent the smartphone from unlocking,
because the smartwatch IMU cannot detect the vibratory signal
sent from the smartphone, since the devices are located on
different persons.
Possession of phone-watch attack: The attacker possesses
both devices belonging to the legitimate user, and knows the
pin code of the smartwatch. Here, the attacker wears the
smartwatch on his forearm, holds the smartphone in the same
hand, and attempts to unlock it.

Again, Shakespeer should prevent the unlocking because
although the vibratory signal is detected, the biometric signa-
ture in the signal will be that of the attacker, and should be
different from that of the legitimate user.

V. Shakespeer DESIGN

We now describe Shakespeer’s design and implementation.

A. Design Overview

We present the overall design of Shakespeer in Figure 4 and
discuss the details of each constituent module in subsequent
subsections. The goal of Shakespeer is to detect the co-
presence of a smartphone and a smartwatch on the legitimate
user’s body. Shakespeer uses a phone to generate a vibratory
signal and takes the vibration propagation response captured
by the phone (denoted as sphone) and watch (denoted as
swatch) as the input of the system. The generation of the
excitation signal and the capture of the response signals are

described in § V-B. Subsequently, we process the collected
response signal with a pre-processing module (§ V-C) includ-
ing filtering and segmentation to boost the SNR and extract
the precise vibration responses. Further, the extraction and
fusion of features from the pre-processed signals are detailed
in § V-D. Finally, we train a classifier to distinguish between
legitimate and illegitimate users.

B. Signal Generation and Capture

This module describes specifications and details on the
generation and capture of the vibratory signals.

1) Generation: Modern smartphones are equipped with a
vibration engine. Shakespeer uses this engine as the excitation
source for sending vibratory signals into the hand and forearm.
We choose a variable frequency signal as the excitation source
to capture the user’s vibration response “signature” under
different frequencies.

There are four types of excitation vibration signals which
are shown in Figure 5. Excitation signals S1 and S4 are
constant frequency vibration signals. These excitation signals
could only capture the user’s vibration response “signature”
in one frequency. To capture more vibration responses un-
der different frequencies, Shakespeer chooses to use variable
frequency vibration signals. Excitation S2 is a set of pulses
where the time interval between two pulses is variable over
time. Excitation S3 is the continuous chirp signal. Ideally, S3

could sweep all the frequencies to get a vibration response
“signature” in all the frequencies. However, due to hardware
limitations of the vibration engine, the vibration engine could
only generate vibrations from 80Hz to 220Hz (based on
our experiment). In addition, the maximum sampling rate
of the IMU is 100Hz, meaning aliasing will occur for the
IMU readings of the vibration signals which may affect the
performance of the system. Moreover, based on our empirical
study, the chirp signal can only be sensed by the gyroscope
on the smartwatch. Figure 6 shows a comparison study of
the smartwatch IMU’s readings between excitation signal S2

and S3. From Figure 6, we observed that S2 has two benefits
compared to S3. First, there is no aliasing in S2 because we
could design the ∆t (∆t is the time interval between two
pulses) based on the IMU’s sample rate. Second, all the six
channels (gyroscope’s XY Z axes and accelerometer’s XY Z
axes) on the smartwatch IMU can sense S2. In contrast, only
the gyroscope can sense S3. Thus, excitation S2 captures more
information because more channels can sense it. For the above
reason, Shakespeer chose to use S2 as the excitation signal.

2) Capture: The application on the phone triggers both the
smartphone and smartwatch to start to read the IMU data
before vibration starts. Specifically, we design the application
on the phone to send a starting sample command to the watch
before the phone starts the excitation vibration on the phone
because there is a communication delay (< 1s). Therefore, it
guarantees the entire vibration propagation signal is captured
on the phone and watch.

To further enhance the captured signal, we request user to
place their thumb on the screen close to the vibration engine



Fig. 4. Shakespeer System Design Overview.

Fig. 5. Four types of the excitation signal. S1: Constant ∆t pulses, ∆t is the
time interval between two pulses. S2: Variable ∆t pulses, the time interval
between two pulses is variable over time. S3: Chirp, the frequency increases
with time. S4: Constant frequency.

Fig. 6. The spectrogram of the smartwatch IMU readings with different types
of excitation signals. Blue boxes: excitation signal S2’s responses. Green
boxes: excitation signal S3’s responses. White lines: highlighted the signal
sensed on the smartwatch’s IMU. There is no aliasing on excitation S3. Both
the smartwatch’s gyroscope and accelerometer capture the excitation S3. Only
the smartwatch’s gyroscope captures the excitation S2.

(see Figure 8). This increases the mechanical coupling between
the vibration engine and the hand, thereby boosting the SNR.

C. Pre-processing

This module takes the vibration signal sensed by both
devices as the input and performs the following processing.
We transmit all the data collected on the watch to the phone
via Bluetooth, with all the following processes on the phone.

1) High-Pass Filter: A user may generate unexpected
minute vibrations when holding a phone or wearing a watch
which might be captured by IMUs. In our empirical study, the
majority frequency of such noise is below 18Hz. Hence, we

Fig. 7. A demonstration of the synchronization process. The correlation
between the smartphone/smartwatch’s signal (green) and the reference signal
(red) will reach the maximum value at the correct time offset such as (O16)
in above representation.

apply a Butterworth high pass filter to remove signals which
are below 18 Hz.

2) Synchronization and Segmentation: To extract the fea-
tures from the filtered signals, we synchronize swatch and
sphone and chop signals corresponding to the length of ex-
citation. The synchronization process has two steps. Firstly,
the sampling timestamps in the time series data at smartphone
and smartwatch are used to align them coarsely. Further,
we apply a time delay analysis to fine-tune the signal to
optimize the final synchronizations. This step is necessary
because the sampling timestamps may have a few hundred
millisecond errors due to internal clocks not being in perfect
synchronization. The time delay analysis can be summed up
as finding an offset, which is given as

toffset = argmax
t

Corr((sref (t), sv(t))) (1)

where Corr is the cross-correlation function, sref is a ref-
erence signal which contains the vibration signal, sv is the
IMU signal on smartphone or smartwatch. The index of the
maximum cross-correlation point corresponds to the optimal
shift required for perfect synchronization as shown in Figure 7.
After the synchronization process, the segment of a few
seconds data containing a recording of the vibration response
signal is taken as an input to the feature extraction module.

D. Feature Extraction

After the pre-processing, there are 12 channels (XY Z axes
of gyroscope and accelerometer on smartwatch and smart-



phone) of IMU readings. We also include the magnitude of
the gyroscope and accelerometer as additional channels. The
magnitude function is defined as the sum of squares over
XY Z axes. The magnitudes provide orientation-independent
information, which helps to eliminate the effect of different
orientations. In total, we have 16 channels for each data point.

Shakespeer computes the FFT distance between the tem-
plate data and the new query data over 16 channels
as the classifier’s input. The FFT distance is defined as
∥F (ST )− F (Sq)∥2, where ∥ · ∥2 is the euclidean distance,
F is the FFT (Fast Fourier Transform), ST is the template
signal (for each sensor’s axis) which is generated during the
enrollment phase, and Sq is the query signal. Shakespeer
chooses FFT distance as the feature because these features
give us the best performance in our evaluation. The evaluation
details are shown in §VI-B4.

E. Classification Model

The classification process includes the enrollment phase and
the testing phase.

The enrollment phase collects the user’s samples to train
a classifier and store the classifier and template data. In
this phase, Shakespeer collects N of genuine samples as the
positive sample and N of imposter (randomly chosen from
the other user’s samples) samples as the negative sample. We
compute two types of distance: the pairwise distance within
the positive samples and the pairwise distance between the
positive and negative samples, as the training data to train a
binary classifier. To generate the template, we take the average
reading of the N positive samples.

In the testing phase, Shakespeer computes the FFT distance
between the query and the template data and feeds distance
into the classifier to make the final decision.

To further explore Shakespeer, we also try 5 different
features, 9 classifiers and 4 fusion methods. § VI-B4 provides
all the details.

VI. EVALUATION

Fig. 8. Experimental setup for data collection to evaluate Shakespeer.

This section presents a preliminary evaluation of Shakespeer
to demonstrate its feasibility.

A. Experiment Setup

We implement Shakespeer on an iPhone 11 and Apple
Watch 6. To collect the data, we develop an iOS application
to generate the vibration signal on the iPhone via the Apple
Taptic Engine API. The application also collects IMU readings
on the phone and the watch as the phone is generating the
excitation vibration signal. We recruited 32 participants (21
males and 11 females, the age-group is 18-60 years) for data
collection. Figure 8 demonstrates our experiment setup. Each
participant is asked to sit on a chair, while wearing the Apple
Watch on their wrist and holding the iPhone in the same hand.
The participant starts the data collection process by pressing a
button on the app. We use the equal error rate (EER) [23] as
the metric to evaluate the performance of Shakespeer which
is the standard metric for biometric authentication.

B. Experimental Results

1) Overall Performance: We ask each participant to provide
20 samples (using 2s excitation signal S2 which is shown
in § V-B) during the data collection. The collected data are
split into enrollment and testing data for each participant.
The enrollment data include five positive samples (randomly
selected from the genuine user’s data ) and five negative
samples (randomly selected from the imposter data, whose
participant ID is not the same as the enrollment ID). The
evaluation data includes 15 positive samples and 15 randomly
selected imposter data (non-overlap with enrollment samples).
We use the enrollment data to train a classifier for each
participant and use the evaluation data to test the performance.
We repeat the above enrollment and testing processes 30 times
for each participant. The average EER is 0.59%, which is
comparable to IMU-based gait verification [24].

2) Impact of excitation signal: The best excitation signal
for Shakespeer is S2. We also collect 6 participants’ vibration
signals using the chirp (S3 in § V-B) excitation via the same
experimental setup. The best EER of chirp excitation is
9.65%. This is because the chirp vibration can not be sensed
by the smartwatch’s accelerometer and the aliasing due to the
low sampling rate of the IMU.

3) Impact of number of enrollment samples: The perfor-
mance of Shakespeer varies as the enrollment sample number
changes. To understand the effect of the number of enrollment
samples (N ), we adjust N from two to ten during evaluation
studies. Figure 9 shows the result, where the EER values are
averaged over all the 32 participants. We can observe that the
EER drops to below 1% when the N > 4. This analysis
indicates that the needed time (< 2s) for a user to register
his/her Shakespeer biometric is practicable.

4) Impact of Different Feature Extraction And Classifiers:
Figure 10 shows the impact of using different classifiers. The
best classifier is SVM, followed by Linear Regression (LR),
Naive Bayes’ (NB), and Random Forest (RF). These fare much
better than the other five classifiers.

Besides the proposed FFT distance feature in § V-D, we
also tried other feature extraction methods, shown in Table II.
“Raw Data Distance” refers to the distance computed using the



Fig. 9. Effect of different number of enrollment samples. In this figure, we
use FFT distance as the feature and SVM as the classifier.

Fig. 10. Comparison of different classifiers. Enrollment N = 5. Feature is
FFT distance.

TABLE II
EER OF DIFFERENT FEATURE EXTRACTION METHODS

FFT Distance RAW Data Distance FFT RAW
0.571% 42.265% 29.797% 53.485%

Classifier is SVM. Enrollment N = 5. Feature is FFT distance.
TABLE III

EER OF DIFFERENT FUSION METHODS
Phone Watch SF(Mean) SF(Max) SF(Min) FF
4.427% 4.168% 0.765% 2.509% 1.457% 0.604%

Phone, Watch: Single feature from either the phone or watch; SF(Mean),
SF(Max), SF(Min): Score-level Fusion using Mean, Max, or Min
function; FF: Feature-level Fusion using the SVM classifier, FFT distance
as the feature, and with enrollment number N=5.

raw signals. “FFT” refers to the concatenation, into a single
vector, of the FFT coefficients of all channels in the signal.
“RAW” is just the concatenation of all channels in the signal.
Note that FFT distance gives us the least error.

5) Impact of Different Fusion Methods: Since the signal
collection from two devices, we also study the impact of using
different fusion methods. We compare two fusion methods
which are feature-level and score-level. Table III shows the
results. We observe that feature-level fusion is better than
score-level fusion because feature-level fusion includes the
correlation between two devices. We also compare the EERs
between different fusion functions (Mean, Max, and Min) in
score-level fusion. Additionally, we evaluate the EERs when
using only one device (either phone or watch). The EERs
drop down to 4%, which implies both signals on the phone
and watch capture some uniqueness of the user.

C. Co-presence Detection

To test the performance of detecting co-presence of two
devices, we collected additional data where we asked the
participants to hold the smartphone without wearing the smart-
watch. Therefore, the watch does not sense any vibration
signal. We feed these data to each participant’s classifier, that
we trained in the early section. The accuracy of detecting the
absence of the smartwatch is 0.999. This result indicates that
Shakespeer can detect the co-presence of two devices.

D. Resilience to Attack

In this study, we perform impersonation attacks to fool the
authentication classifier. In this scenario, we randomly chose

12 of the 32 participants and split them into six groups.
Each group has two participants, one is an adversary, and
another is a victim. We ask each adversary to observe how the
paired victim holds the smartphone and wears the smartwatch.
Moreover, we ask the victim to guide the adversary to mimic
the victim. Finally, we collected six groups of attack data and
tested the performance over the six victims’ classifiers. The
average accuracy of detecting the adversary’s sample is 0.98.
The preliminary results indicate that Shakespeer is potentially
robust against impersonation attack.

VII. DISCUSSION

We now discuss some possible applications of Shakespeer,
as well as deployment considerations.

A. Possible Applications

In financial applications, R.Xiao et al. [25] propose using
vibrations for transmitting payment information between the
customer’s smartphone and the merchant’s point-of-sale de-
vice. Shakespeer could use the same vibrations for authenti-
cation, thereby increasing security without requiring the user
to perform any additional actions.

In a smart home, imagine a smart door knob generating
a vibration signal when someone turns it. This signal could
be sensed on the user’s smartwatch, enabling Shakespeer to
authenticate the user for allowing or disallowing the opening of
the door. Likewise, other home appliances could be augmented
with vibration engines to produce signals, triggered by touch,
for Shakespeer to sense and authenticate.

B. Deployment Considerations

A number of deployment considerations need to be ad-
dressed before Shakespeer can be deployed in real-world
settings. First, because different users wear their watch dif-
ferently (e.g., some with the watch facing outwards, while
others, inwards), Shakespeer needs to be invariant to these
positional effects. Second, the way in which the user holds
the phone (e.g., grasping with the full hand or holding with
the fingers) will certainly affect how the signal is propagated
to the forearm. Third, the effect of wearing gloves, or even
having a wet hand, has not been investigated. Analyzing the
impact of these issues will require further investigation.

VIII. CONCLUSION

We present Shakespeer, a novel method to detect the co-
presence of a smartphone and smartwatch, while simulta-
neously authenticating the legitimate user. This is done by
generating a vibration signal on the phone, which is sensed
by both devices. The signal propagates through the user’s
forearm, thereby capturing their biometric “signature”. Initial
experiments demonstrate that Shakespeer is promising, and
hints at the possibility of using the human body as a medium
for co-presence detection as well as biometric authentication.
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